3. PROBABILITY DISTRIBUTIONS: P (S>£Z)A B> (0 < a <.2)

We are now ready to obtain the first-order exceedance probabilities

PI(E > Eo)’ cf. (2.22b), when an independent gaussian component is present,
so that Eqs. (2.78), and (2.90), (2.93) apply respectively for the charac-
teristic functions for Class A and B interference, to be used in (2.22b).

First, however, it is convenient to introduce the following nor-
malizations:

: - i = - E::
Class A: Eb = EO/\/EQZA11+TA) : 5/1/292A11+FA5 £3.1)
with
- o . ol . gauss intensity
o = Am,A<Bo,A>/2 s Tp = og/: "impulsive" intensity
(3.1a)
For Class B noise we use (5,14), viz., '
E
Class B: &, = 0 . B o= E i
2p +I‘B JZQZB +I'B
(3:2)
where, cf. (5.14a), we have
B
_ B< } _ 2 |
QZB = { Fé =G’G/QZB (3.2&)

which are directly analogous to the corresponding parameters above for
Class A noise. Then, writing '

8org : {?92(T+F'§'4/2, AorB, (3.3)

we see that £ = aE, &, = aE, in each case, and .. r = ax in (2.78), (2.90)
and (2.93), so that the desired exceedance probabilities now have the
generic form
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PLE>E ) p = T"%J; 3y (N F (1ad), g, (3.4)

cf. (2.22b), where, of course, the specific parameter values in the normali-
zation factor a have different forms for the Class A and B interference.

3.1 Class A Ihterference:

Applying (3.1) - (3.3) to (2.78) and omitting the "correction terms"
allows us to write the Class A c.f. in the following desired approximate
form: '

Ay o= AN 022822
! ml €

g s 205 = (AT )/(4T))  (3.5)

F](iﬂl)A = e

cf. .Eq. (3.]7)*[Midd1et0n, 1974], and we henceforth abbreviate A_ , = A,,
etc. Applying (3.5) to (3.4) then gives us
e 22

Ay, o AT e ~05,a905/2
PLE>E), v 1 - Ee N mZO ﬁ’;‘-j[; I (Ep)e ™ dr (3.6)

which with the help of (2.25) and the relation 1F1(1;2;-x) = (1-e7%)/x,
[Eq. A.1-19b, Middleton, 1960], becomes™™

PLE>E ), 1-e-AA E A—E —ai F. (1325627252 (3.7a)
1-7%/A 2 neg M o2 1714 865750 g ‘

R o mA (3.7b)

*  Note that 25$A here is equal to °§A’ cf. Eq. (5.7), of Middleton (1974).

e This(PD i§ properly normalized for é32>A =1, cf. remarks following
Eq. (2:/8):
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for the desired approximation* of P]-A' We observe at once that the Class A
exceedance probability P, is (primarily) a weighted sum of rayleigh pro-
bability distributions (P.D.'s), each with a variance which increases with

order (m). Note from (3.7) that

Py (EiO}A =1 P (E>80+m)A =0 ;

Ay = (14T)) A} |
soe w (A A " 2

and since each term of (3.7b) is positive and the exponential Tess than
unity, 0 < Py_p <1, also with P," » monotonically decreasing as £ + =,
all as required for a proper (exceedance) P.D. Furthermore, the expected
"rayleigh"-form of the P.D. is exhibited in (3.8) for small thresholds,
e.g.,

2
- -Bg .
P1(€>£',0)A = T—BAEg = e Ao : BAﬁg << 1, (3.9a)
where explicitly now
A e Am+'|
= A A 1
B, = (1+r})e ) Y s
A A m=g ™ (m+ApTp)

which depends, of course, on the Impulsive Index AA and on the intensity
ratio TA’ cf. (3:1a):

* The correction terms (containing C4,Cg, etc.) in the c.f., and hence in
the P.D., may become important for extremely large £o and very small
values of the Index Ap, although present experimental results, and theory,
indicate that the principal effects for large values of £ are satisfac-
torily accounted for by the approximation (3.7). We reserve to a later
study the investigation of these effects.
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Figs. 3.1IT and 3.2II, based on (3.7) show some typical distributions
Pip Vs. thresho]d.é%, with r, and A, respectively as parameters. As
expected, these PD's are highly nonrayleigh* for the rarer "events", e 0.
those which exceed the larger thresholds 6%, while the rayleigh forms appear
for the less rare events (66 small), also as expected, cf. (3.9). Thus
while the slope (dP]/d£b) is a constant -2 (Ee“xz) for the small amplitudes
on these log vs. Tog? probability scales, it is an (approximate) -1.2 for
' =107%, Ay = 107 for € >« i.e. a fall-off (ze-x(1-2)of P_p at
large €, somewhat faster than exponential, which latter is consistent
with the required existence of all moments, cf. Sec. 5. Different
values of AA’ rA lead to different lTimiting slopes as €, > =» but all are
dominated by the exponential type of fall-off. In addition, as the rela-
tive size of the gaussian component increases (increasing FA) so does the
threshold E.0 rise, above which the nonrayleigh effects appear. Similarly,
as the Impulsive Index AA increases, i.e. the envelope distribution ap-
proaches eventually the 1imiting rayleigh form (2.57b) [with (2.53a)] as
AA + =, the very steep "neck" of the curve becomes less extensive and
shifts to the larger probabilities (lower Eb), also as expected. In the
Timit AA +~ = this "neck" disappears entirely and the straight-line
(slope-2) rayleigh distribution appears, for all Eb. [Development of
these numerical results to a much more extensive and fine grid of param-
eter values is planned for a later Report.]

3.2 Class B Interference (0 < a<?2):
Applying the normalizations (3.2)-(3.3) to (2.90), (2.93) now, for the
two c.f.'s which approximate the Class B interference, we obtain explicit]y**

* For envelopes E here, e.g., equivalently nongaussian for the corresponding
instantaneous amplitudes X [Middleton, 1974].

** For compactness, we set A = Ap, henceforth, cf. (3.5) et seq. above .
m’B B
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Figure 3.1 (II). The envelope distribution [Prob(€ > &)] calculated for
~ Class A interference for Ay = 0.1 and various I'y from
eq. (3.7b).
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Figure 3.2 (II). The envelope distribution [Prob(€ > €)] calculated for
Class A interference for T'p = 107* and various Ap from
eq. (3.7b).
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a.0 , 2.2.2
—b1aABa A -&aGa x=/2

Fi(iax)g_; = e ; (3.10a)

2.2
. A b, a®x2/2
Filian)g g < e B.explAge 2° ~cZalxayls (3.10b)

These, in turn are applied to (3.4) to give us Pl-I 11 respectively.
Starting with (3.10a), we expand the exponential in x® and use (2.55)
to get

= (by Ag2®)" - -acZa®r?/2
B n na G
P](E ”%)B-I v 1-6 nzo T (-1) j; A J1(l60}e dx
o (3.11a)
~ ~ A o o (-'-I )nﬁ‘n ~
= BE5E) ~1-E2 ] ——2r(+ 50 (R O+ 5 25 E)
it ns0 M (3.11b)
& = (gN;)/26ys A, = A /2% [€,~EN; in (3.71a)],  (3.01c) |
B o
T I  \qa/2_ 20(1-0/2) ( 0,B t>
A = 2y a Ay = 2by Ap/ 2055 (14T ) 1T 1y A§<‘ e
28\ 1*Tp,
and : (3.12a)
62 = Ter) T (G2 4y (3.12b)

cf. (2.88a,b,c), (3.3a), where N; is a scaling factor which scales P]-(B-I)’
. 2y - 2 2 _ .2
Wy_(p-g) to insure that (£ = 1, cf. (2.94) ff, where agaog = 2Gg. The

quantity Aa is the Effective Class B Impulsive Index, which is proportional

to the Impulsive Index AB’ for this Class B interference. In addition, it
depends spatially on the spatially sensitive parameter, a, and on the
relative gauss component ré, (3.2a).

With the help of Kummer's transformation [Middleton, 1960, Section
A.1.2, p. 1073, Eq. A.1-17] we can write (3.11b) alternatively as

;EZ (-1)"AN
~ 0 a2 o
RCECANREA {1“50

1 n!

o

n on, , .22
F(-I+2_')-IF-E(-I" 232360)} 3

I ~18

n (3.13)
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where we have used Eq. (A.1-19b) [Middleton, 1960]. For large 5% we obtain
formally, with the help of the asymptotic relation [Middleton, 1960,
(A.1-16b), p. 10731,

JFp(e383-x) v Bl e [} eiaii) R el Dep dlasenn) +---J ;

— I'(B-a R 2
21x (3.14)
the following expression for P]:
= AT C b
/P\T (E_\)/%)B_I o Z [1( ') ( )g-n(l [ (-[+Cf.ﬂ/2)(0in) +... 0,
p=f i r(1-%§) 25
€2 55 1, (3.15)
0
This shows that 1;m 1.1 O(E, ) »> However, as explained in A, Sec-

tion. 2.7, for E% greater than some (1arge) value Eﬁ, which is determined
from Eq. (3.19e) below, we must use the second form of c.f., (3.10b).
Figs.3.311,3.4I1 here are based on (3.11b), (3.15), and are valid repre-
sentations, provided 56 is not too large, e.qg. E% 5_88.

For the "rare events", or large E,» we apply (3.10b) to (3.4), as

discussed earlier (cf. A, Sec. 2.7), to obtain
A

AB o —cmBa x-/2
P, (E >C)VII v l=ge j-J(ElJe dx, (3.16)
with
252 = 2(mb. +02)a2 = (I +r2)/(1418) , An = Ag(22) (3.16a)
“mg T “\M207%6’%8 T T B g/ » "B = "B\I—q

B

from '(3.2a),(2.88¢c), cf.{3.5), (3.6): thus ;mB has the same form as o ,,
(3.6). Accordingly, we may use the result (3.7b), rewriting it here for
this large-magnitude approximation for Class B noise, as*

-A m 2irnit
B« A, -E£7/20
I 2e @™ (g 58 . (3.17)
2 0 B
4GB m=0 .

* This PD is now properly normalized [remarks after (2.94) and], cf. (i),
(3.17a,b), and discussion following.
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Figure 3.3 (II). The envelope distribution [Prob(é > &)] calcylated for
Class B interference for a = 1.0 for various Ay from
eqs:. (3.11b, 3.15)-.
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Figure 3.4 (II). The envelope distribution [Prob(€ > €,)] calculated for
Class B interference for A, = 1.0 for various a from

eqs. (3.11b, 3.15).
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[Figures 3.11I, 3.2II for Class A interference illustrate the character of
(3.17), which, of course, is only applicable here, Class B, for the larger
values of & (>€B)L]

A. The Composite Approximation:

' The prob]em with the approximating results for P]-B in the Case B

model, cf. (3.11b) and (3.17),is that these forms, stemming as they do from
approximate c.f.'s [cf. (3.10a,b)], are not properly scaled, or "normalized",
in the sense that each approximating form, P1-I’P1—II’ does not yield the
correct mean square value of (22)8 =1 or (E2>B = 2928(1+Fé), ¢f. (5.14)

with (3.2), and the remarks following Eq. (2.94) above. The approximation
Pi_1» and its associated pdf, Wy_p (4.3), in fact, do not possess a finite
mean square on (0,=), cf. Sec. (5.3)ff., while Pi_11» the "Type A" form and
Jits pdf., wy_pps (4.4), yields %) ([ # 1.

Accordingly, since the precise mean square is finite and is known to
be (E?)B = 1, by calculation from the exact c.f.'[cf..(S.]Oa), and Section
5.2-B], we must suitably scale (or "normalize") Wi_1e Wi1p (4.5) so that
<82>B, cf. (5.6c), exists and is equal to unity. This is done as follows:

(i). Let us consider first'w]_II, (4.4), and calculate QEZ)II on (0<f<w)
according to (5.1). The result is easily seen to be

- -
A, = (m/AL+T)) — 4T

2 B B "B’ ,m_2-c B 2
£ = e ) Ap = =1 = 4G5 (#1), (3.17a)
(€ p-11 Lo TFTLIRT - 8 T T B
where GS is given by (3.12b), so that here we require the normalization

2y~ .
factor N%I = (4GB) 1, e.g.
_ ] L 2

B-II-norm 4GB

(Henceforth in the text we write w](ejB-II’P]-II in normalized form,

which are then used for anlytical and numerical calculations in the
remaining sections of Part II here.)

(i1).The case of w]_I,(4.3),requires a different approach, since G;?)B—I on
(0<€<w) becomes infinite (0<a<2), cf. Section 5.3: [<€2>B-II on
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(0<$iEé<m), of course, is finite, cf. (5.6c)]. Here we need to scale
£ according to (3.11b) above: € —+¢ NI (and :. (€ \ )/26 )a

The rationale for this is the observation that P] I (and Wi _ I) must

have the same values in the rayleigh region (E.<<T), where P1 r & 0.5,
or 0.99, etc., as does the precise d1str1but10n, 1-B° based on the
(intractable but) exact c.f. (2.87), hence (3.11b). The scaling factor,
NI, is to be determined by fitting the two approximate forms P1 I

1 I1 together by the procedure outlined below, which is based on the
canonical properties of the Class B mode] generally. Note, finally,
that the "Class A" form (II) is coupled to the Class B form (I)

through the Class B parameter a, and vice versa through the "Class A"

parameter F 3 appear1ng in GB’ common to both approximations I,II.

To combine the suitably scaled P,_; and normalized P;_;; to form the
composite approximation for Class B interference which is valid for all
€. > 0 we now use the following desired properties of P

0
is sketched in Fig. 3.5II:

1-composite’ which

(i). Briop = P1—iI in the rayleigh region, e.g. 0 <g_ small. Equality
of the two approximations in the rayleigh region is
required, since both must represent the same (small)
amplitude behaviour, characteristic of all these

PD's
dP dP
(i1). d€1_I = défII in the rayleigh region.
0 0
(411): P]—I = P]-II at the "bendover" or junction point EB of the two

approximations, cf. Fig.(3.5)II. This point, éﬁ,
is empirically determined from the data, e.g. from
the experimental APD or exceedance probability curve

PI(€ >£5)exp.’ as described below, cf. (vi).
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10 10 10 0.0l 0.0 0.2 04 06 08 09 095 096 099
P (E>€,);
Figure 3.5 (II). Schema of P _g» €9. (3.20), obtained by joining the two
approximating forms (3.11b, 3.17).
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(11 Py_py imati
(iv). = Ie ) : the (finite) slopes of the approximating P1-I,II

EB are equal at EB: this insures a common tangent,

i.e., a smooth fit; moreover, we have

2

dPy;  dPpg
(v). ( = ) (#20): this follows as a consequence of (iv),

de? d€¢ |

B and the continuity of the derivative at

€g» insuring that the associated pdf's
are continuous at the joining pointE:B.
However, note that EB is not usually a
point of inflexion of PI-I,II‘

(vi). &,: this is the point of inflexion (dzp]/dﬁg = 0) of the actual
Py, and is determined as such (by inspection, usually), of
the empirical exceedance probability Pl-exp.’ o3 o 2 s

(3.5)11. (3.18)

Accordingly, from (3.11b), (3.15), (3.17) we have explicitly for (1)-(v)

above: B Aa n
2 (-1)°( ) -A
N2 ) 2 B m
. EoNl o 2°Gg ny - Eo® R R
N I e D T o e R
4G5 n=0 R 2 462 meg ™ mB :
B B (3.193)

[(ii). [Same as (3.19a), without the 265 factors common to both members
of the equation; however, (ii) is here implied by the form of
(1) and does not provide new information.] (3.19b)
A 1(1+a/2) T A e A _g2/05
S o e 25 8,
2%63r (1-o/2)\ 2% 1 U7 agimi0 ™ ’
A aT(140/2) /€ N\~ e B o AT _g2/952
2%Ggr (1-a/2)\ “7B / S

(341 )=

m

(iv).

B

—_—g H
462 meo™
(3.19d)

{v),{vi): EB cannot be determined analytically from either approxi-
mating form P]—I e It must be established as a point of
inflexion from the empirical PD, as noted above. (3.1%)
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[In using (iii), (iv), we may need at least the next set of "correction"
terms in the asymptotic developments of P,_;, dP]_I/dFB.] We note that
(given EB) these three relations [(i),(iii),(iv)] are sufficient to
determine in principle, any three of the six parameters NI,a,Aa,AB,QZB,ré
(cf. (3.16a)), when the other three are specified. Later, in Section 6,
we shall show how (3.18), (3.19) may be extended to permit us to obtain,
the six

from the experimental exceedance probability PI(€>éb)xpt, -
parameters NI,a,Aa,AB,QZB,Fé (or, more fundamentally, [“’AB’(Bg,B>’QZB’ré]’
cf. (3:12)).

For the illustrative calculations of Figs. 3.6II, 3.7II, it is con-
venient to preset &q;Ny,a,A , and determine AgsTps2pp from F), (i) div).
Other possibilities are: Fix (EB;NI,a,Pé), determine (Aa’RZB’AB); fix
(8B;Aa,a,ré), determine (NI’AB’QZh); fix (EB;AB,Té,QzB), determine
(NI,u,Aa); fix &FB;NI,AB,Fé), determine (Aa,a,QZB) etc. In any case,
we have now -

P-I_B = P-I_I, 0 5-80 iEBs = P-l_IIs 80 1889 (3-20)

with Py _;, Py_11 9iven respectively by (3.11b) and (3.17). The curves of
Figs. 3.6II, 3.7II are equivalent to Figs. 3.1.1, 3.1.2 of Furutsu and
Ishida [1960], with (v/a)p,p + Ags (ag/o)ey » (rg)™', and (R/o)py; » &,
and exhibit the same kind of "elbow" in the transition region from the
rayleigh behaviour (f0r22§<<1), with a bend-over to a constant slope
(P1me"a€5,_n>0), as for Class A noise, when & + =, cf. Figs.3.111,3.2I1,
Sonily

B. Remarks on Hall-Type Models:

Finally, we observe that a Hall model [Hall, 1966] may be obtained
formally from the P1-I form for therayleigh and intermediate region
(Qifdiea)’ provided we neglect the gaussian contributions (e.g. acé + 0),
so that the c.f. (2.89) now applies. From (2.89) in (3.4) we accordingly
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Figure 3.6 (II). The (complete) envelope distribution P, (€ > &;)g, eq.
(3.20), calculated for Class B interference for various
Rs» given o egs. (3.11, 3.17, 3.19, 6.9, 6.10) .
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Figure 3.7 (II).

P1(€> gU)B

The (comp1ete) envelope distribution P,(€ > &;)g, eq.

0.99

(3.20), calculated for Class B interference for various

&, given Ay (egs. 3.11, 3.17, 3.19, 6.9, 65.10).
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obtain*

thy, A.a®*
18 % 45 (3.21)

PrE€ > €)p s E-T'be; J1(Egrle

This integral may be evaluated in several ways, convenient for small
or large 65. We start with the case convenient for the small values, and
employ the following transformations:

_ Cp_p ~=0y, a _ S _ 1/
BCt = h-laABa (_ACIE ), BGA =2 3 J.A= (Z/Ba) (3.22)

dx = dz 2T/ ggl/a

so that (3.21) becomes now

1-a

: S i R ke 1
PLEE) | 1 EE'J; 3,(€0z loy, @ o7Zgy £ = Eb/Ba/a . (3.23)

Next, let us use the Barnes integral representation of J]:

25+1
63 Z(ZSH)/OL ds

el (3.24)

" ]/q = F('S)
'J.] (EOZ ) _'/1"-

r(s+2)2°5t

cf. Eq. (13.106) and Fig. 13.22 of [Middleton, 1960], where T is the contour
(-=i+c, i=tc), with c(<0) chosen so that the integral over z in (3.23) is

convergent at z = 0, e.q.

f“"z(2+2s-a)/ae-zdz . r(_zié.S_) , Re(s) > -1, s-1<c<0. (3.25)
0

* Equation (3.21) was obtained earlier by Giordano [1970, Eq. 3.66 therein;
Giordano and Haber, 1972, Eq. 24] but was not analytically evaluated.
Moreover, P I? here (as well as the earlier forms [Giordano, 1970], etc.)
is not scaTéa, e.g.,¢e%p_1#1, as discussed at the beginning of A. above.
See comments at end of B here

-
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Thus we find that (3.23) becomes
2s+1

Eg r(-s 2+2s (EE) ds -
P1(E>£o)a-1-"-‘-“?_£rHs+2 L= o P (3.262)
2 n. ,242n,.2n

ZEcj o (-1) F(—E'-JEO
@ 2o n!(n+1)!A£2+2nVu

=

) (3.26b)

this last on evaluating (3.26a) at the simple poles s = n = 0,1,2,... and
‘using B = A, R cf (3.22). Equation (3.26b) exhibits the characteristic
ray1e1gh form (mE ), when 82<<1 as expected.
Next, for 1arge values of 8‘ (or small values of Aa), we return to
(3.21) and use the Barnes integra] representation for exp(-BuA“), T

=R
e ¢ = fr( SB>10%3 as_ (3.27)

r 2mi

to reéxpress (3.21) as

PUE>E )y [ v 1- é‘as (-s) %80 (z)dz, -2 < Re(as) < O,
B-1 — 2w1 0 1
Re(s) > -1.

(3.28)
To evaluate the z-integral we use [Watson, 1944,p. 391]:

fo 30V Nt = r(w2)/r (v 241027, Re(u)<Re(w3/2)  (3.29)

with v=1,u = s+2 here, and .. O<Re(as+2)<2<Re 5/2, as required. Equation
(3.28) becomes

: r(-syr(1+ - *-0S 4
Pi€>E)p 1~ 1-]1: = %i) o 2 (3.30a)
E r(1+ &) (-1)™ "
N : . 3.30b
" n=1 r(1- %ﬁ)n!Egn : -
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which shows how this approximation behaves as €, ~ =, viz. O(E;“), e.g.:

2
r(1+a/2)A A g
g n e Bl o) o ca <2
r(1-a/2)€, € (3.31)

Now in the special case o = 1, we may sum the series (3.26b) or (3.30b).
Choosing (3.26b) we get

2n

isac ezl

° n=0 n!(n+1)‘!AI

o (-1)"r(2+2n)¢

(3.32a)

and since (n+1)! = (2) , r(2+2n) = 22"(1)n(3/2)n [Middleton, 1960, (A.1-46b),
p. 1078], we find that
¢
n 1-2 E% oF1(1,3/2;2;-262/A3), (3.32b)
1

From [Middleton, 1960, Eq. (A.1-40c)], the (gaussian) hypergeometric func-
tion in (3.32b) is explicitly

oF; (1 ,3/252:-x2) = (2/~x2)(I+x2)']/2@-"1+x2},

so that (3.32b) reduces explicitly to

o , (a=1) , (3.33)

which is a special case of the Hall model (eHan = 2), for envelopes
[Spaulding and Middleton, 1975, Eq. (2.33)]. [Note that P! ~ €1, & =,
which checks with (3.31): in fact, both (3.31), (3.33) give P 3_A1/2£6,

as expected. Observe also that Pi(£3ﬁ5=0)é_l =1, as required: P; is a
proper P.D., although it is an inappropriate approximate form when Aog

is at all comparable to (bTGA1G)1fa, cf. (3.10a); it is also not applicable
for very large 65, as explained earlier in A of Sec. 2.7 above. In any
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‘case, Hall-type pdf's and P.D.'s are not possible for Class A interference.]
Finally, we note that although the above PD's and pdf's, Eq. (3.26b),

(3.31), exhibit the correct behaviour as &, + 0, , they are not scaled

(in 66) properly, to provide the finite mean square needed, e.g. <EZ> =1,

(cf. comments at the beginning of A above). Accordingly, as for P11

above generally, cf. (3.11b) et seq., we must replace Eb by ngi, where the

scaling factor Ni is determined, along with the four other parameters

(Aa,a,ré,QZB) of the distribution, by the procedure outlined in Section 6C

following. [For the Hall model, « =1 here, and there are then only four

parameter values (Ni’Au’Pé’QZB) to be established.]
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